La deuxième thèse de GEOTREF a été soutenue par Keurfon Luu le 28 septembre 2018 à 14h00 à l’Ecole des Mines de Paris : optimisation numérique stochastique évolutionniste : application aux problèmes inverses de la tomographie sismique.
Résumé
La tomographie sismique des temps de trajet est un problème d’optimisation mal posé du fait de la non linéarité entre les temps et le modèle de vitesse. Par ailleurs, l’unicité de la solution n’est pas garantie car les données peuvent être expliquées par de nombreux modèles. Les méthodes de Monte Carlo par Chaînes de Markov qui échantillonnent l’espace des paramètres sont généralement appréciées pour répondre à cette problématique. Cependant, ces approches ne peuvent pleinement tirer parti des ressources computationnelles fournies par les super calculateurs modernes.
Dans cette thèse, je me propose de résoudre le problème de tomographie sismique à l’aide d’algorithmes évolutionnistes. Ce sont des méthodes d’optimisation stochastiques inspirées de l’évolution naturelle des espèces. Elles opèrent sur une population de modèles représentés un ensemble d’individus qui évoluent suivant des processus stochastiques caractéristiques de l’évolution naturelle. Dès lors, la population de modèles peut être intrinsèquement évaluée en parallèle ce qui rend ces algorithmes particulièrement adaptés aux architectures des super calculateurs. Je m’intéresse plus précisément aux trois algorithmes évolutionnistes les plus populaires, à savoir l’évolution différentielle, l’optimisation par essaim particulaire, et la stratégie d’évolution par adaptation de la matrice de covariance. Leur faisabilité est étudiée sur deux jeux de données différents un jeu réel acquis dans le contexte de la fracturation hydraulique et un jeu synthétique de réfraction généré à partir du modèle de vitesse Marmousi réputé pour sa géologie structurale complexe.