# Physical properties of fresh or hydrothermalized volcanic rocks from the west coast of Basse-Terre and Terre-de-Haut (Guadeloupe archipelago)



Vivien NAVELOT<sup>1</sup>, Yves GÉRAUD<sup>1</sup>, Marc DIRAISON<sup>2</sup>, Jeanne MERCIER DE LÉPINAY<sup>2</sup>, Marc MUNSCHY<sup>2</sup>



(1): UMR 7359, GeoRessources, ENSG-University of Lorraine, Vandoeuvre-lès-Nancy, France (2): UMR 7516, Institut de Physique du Globe de Strasbourg, CNRS, Strasbourg, France

### Project presentation

The GEOTREF project (geothermal energy in high enthalpy fractured reservoirs) tries to achieve several goals:

- Improve model of geothermal reservoir in volcanic context
- Optimizing exploratory drilling targets to mitigate financial risks
- Improving control over geothermal resource exploration process • Adapting methods routinely used in Oil & Gas exploration and production to
- geothermal energy
- Focusing on fractured reservoir characterization and modelling

**Step 1. R&D:** Developing inovative methods and workflows leading to software tools Step 2. Demonstration: Applying those tools to a Caribbean prospect

GEOTREF is a four-year R&D program carried out by a consortium with internationally recognized expertise and experience

GEOTREF aims to be an innovative and complete tool for geothermal development and is therefore supported by the French state through the « Investments for the Future » financing program

### Study zone and geological context

The Lesser Antilles is located in a relatively low velocity subduction zone. Several islands have a present-day volcanic activity. The Guadeloupe archipelago contains the only geothermal plant in the Carribees.



islands (after Verati et al.,2016)

Study zones on 2 islands composed of calc-alkaline volcanic rocks:

#### •Basse Terre:

Volcanic activity between 2.79 Myr present. A geothermal plant is exploited in the Bouillante Bay since 1985 providing 7 % of the electrical needs. z The target zone of the GEOTREF project is located in the Vieux-Habitants area, 9 km south of Bouillante.

• Terre-de-Haut, Les Saintes : Volcanic activity between 2.98 and 2.00 Myr. A geothermal paleo-system is exhumed in the central part of the island. This paleo-system could be an

exploited in Bouillante.

analog of the geothermal reservoir 2,5 5 10

Geology of Basse-Terre (after Feuillet et al, 2002, Mathieu et al., 2011 and Samper, 2007)

#### Material and methods

#### 100 samples, 8 volcanic rock types



Ad: Adularia; Ca: calcite; Cl: clast; Gy: gypsum; Io: iron oxides; Ma: microlithic matrix; P: pore; Pl: Plagioclase; Px: pyroxenes; Qz: quartz

#### Measurements

- Porosity (mercury, gas pycnometry, weighting method)
- Permeability (portable and nitrogen permeameter)

Results

**Andesite lava** 

Vesiculated

andesite

andesite

**Debris flow** 

MT\*: Measurement Treshold

GD15.10 (33.89 %) GD16.14 (32.56 %) GD15.13 (32.2 %) GD15.09 (31 %)

GD15.30 (28.8 %)

- Thermal conductivity and diffusivity
- P-and S-waves velocities
- Magnetic susceptibility
- Bulk and skeletal densities
- Resistivity (expected)

# Pore size diameter



- Heterogeneity of facies  $\rightarrow$  Large variability of physical properties
- Fresh andesite lava is a poor reservoir with low fluid flow properties
- Volcano-sedimentary and fracture filling facies are thermal barriers but have excellent storage and fluid flow properties
- Homogeneous properties in each fresh facies. Dispersion of measures is higher in weathered samples
- The development of a planar bedding (cooling joints, metamorphism cleavage) increase the permeability of andesites and create a planar anisotropy
- Hydrothermal alteration affects substantially the evolution of mineralogy, porosity, permeability and thermal conductivity
- Saturation have almost no effect on the thermal conductivity of low porosity andesites.



Pore size diameter (um)

| Summary of measured properties |                     |                  |           |                                         |                                         |              |                                              |                                            |                                               |                                                |                                                   |             |                                                       |
|--------------------------------|---------------------|------------------|-----------|-----------------------------------------|-----------------------------------------|--------------|----------------------------------------------|--------------------------------------------|-----------------------------------------------|------------------------------------------------|---------------------------------------------------|-------------|-------------------------------------------------------|
| Rock type                      | State               | Sample<br>number |           | ρ <sub>b</sub><br>[g.cm <sup>-3</sup> ] | ρ <sub>s</sub><br>[g.cm <sup>-3</sup> ] | Φ<br>[%]     | K<br>[m²]                                    | V <sub>P</sub> dry<br>[m.s <sup>-1</sup> ] | V <sub>P</sub> saturated [m.s <sup>-1</sup> ] | λ dry<br>[W.m <sup>-1</sup> .K <sup>-1</sup> ] | λ saturated [W.m <sup>-1</sup> .K <sup>-1</sup> ] | _           | Magnetic<br>susceptibility<br>[x 10 <sup>-3</sup> SI] |
| Andesite lava                  | Fresh               | 10               | Median    | 2.68                                    | 2.75                                    | 3.11         | 1.6.10 <sup>-17</sup>                        | 4858                                       | 5522                                          | 1.73                                           | 1.85                                              | 0.75        | 11.14                                                 |
|                                | Without vesicles    |                  | Min - Max | 2.59 - 2.74                             | 2.69 - 2.83                             | 1.11 - 3.93  | $6.9.10^{-18} - 2.09.10^{-16}$               | 3920 - 5929                                | 4878 - 5858                                   | 1.58 - 1.91                                    | 1.80 - 1.91                                       | 0.70 - 0.81 | 6.22 - 26.8                                           |
|                                | Fresh               | 12 1             | Median    | 2.47                                    | 2.77                                    | 9.33         | 1.2.10 <sup>-15</sup>                        | 4320                                       | 4836                                          | 1.42                                           | 1.6                                               | 0.76        | 9.06                                                  |
|                                | With vesicles       |                  | Min - Max | 2.17 - 2.68                             | 2.69 - 2.82                             | 3.89 - 21.27 | $1.1.10^{-16} - 3.29.10^{-15}$               | 2876 - 5271                                | 3298 - 5661                                   | 0.76 - 1.82                                    | 1.357 - 1.89                                      | 0.70 - 0.83 | 2.07 - 25.77                                          |
|                                | Planar bedding      | 10               | Median    | 2.57                                    | 2.64                                    | 2.49         | 7.19.10 <sup>-17</sup>                       | 4958                                       | 5155                                          | 1.81                                           | 1.86                                              | 0.81        | 11.65                                                 |
|                                |                     |                  | Min - Max | 2.42 - 2.62                             | 2.54 - 2.70                             | 1.39 - 10.25 | $2.1.10^{-17} - 1.3.10^{-14}$                | 3502 - 6233                                | 4190 - 5569                                   | 1.65 - 1.884                                   | 1.62 - 1.875                                      | 0.73 - 0.96 | 7.48 - 15.87                                          |
|                                | Highly weathered or | 12               | Median    | 2.00                                    | 2.63                                    | 21.53        | 9.95.10 <sup>-15</sup>                       | 2088                                       | 2177                                          | 1.55                                           | 1.72                                              | 0.89        | 12.46                                                 |
|                                | hydrothermalized    |                  | Min - Max | 1.60 - 2.45                             | 2.50 - 2.80                             | 6.7 - 35.9   | $8.3.10^{-17} - 4.4.10^{-13}$                | < MT* - 4063                               | < MT* - 4377                                  | 0.83 - 2.02                                    | 1.36 - 2.63                                       | 0.69 - 1.06 | -0.04 - 27.62                                         |
| Debris flows                   | Fresh               | 14               | Median    | 1.65                                    | 2.64                                    | 33.02        | 1.01.10 <sup>-13</sup>                       | 2035                                       | -                                             | 0.66                                           | -                                                 | 0.88        | 8.00                                                  |
|                                |                     |                  | Min - Max | 1.51 - 2.25                             | 2.49 - 2.79                             | 16 - 40.5    | 4.8.10 <sup>-15</sup> - 1.5.10 <sup>-9</sup> | 1697 - 2639                                | -                                             | 0.43 - 0.76                                    | -                                                 | 0.29 - 1.05 | 4.89 - 16.6                                           |
| Pyroclasts                     | Fresh               | 24               | Median    | 1.46                                    | 2.64                                    | 40.57        | 3.83.10 <sup>-14</sup>                       | 2273                                       | -                                             | 0.50                                           | -                                                 | 0.83        | 6.92                                                  |
|                                |                     | Z <del>4</del>   | Min - Max | 0.62 - 2.25                             | 2.21 - 2.79                             | 19.2 - 76.1  | $2.1.10^{-15} - 7.2.10^{-10}$                | 634.9 - 3584                               | -                                             | 0.26 - 1.36                                    | -                                                 | 0.53 - 1.19 | 4.05 - 19.33                                          |
| Fracture filling               | Highly weathered or | 10               | Median    | 1.39                                    | 2.37                                    | 39.17        | -                                            | 1059                                       | -                                             | 0.81                                           | -                                                 | -           | -                                                     |
|                                | hydrothermalized    |                  | Min - Max | 1.26 - 1.58                             | 2.16 - 2.50                             | 25.9 - 51.6  | $1.3.10^{-13} - 2.9.10^{-13}$                | 648 - 1088                                 | -                                             | 0.53 - 0.84                                    | -                                                 | 1.01        | 5.62 - 9.38                                           |
| Volcaniclastic rocks           | Hydrothermalized    | 8                | Median    | 1.85                                    | 2.59                                    | 28.66        | 9.99.10 <sup>-14</sup>                       | 2083                                       | -                                             | 0.94                                           | -                                                 | 0.88        | 4.61                                                  |
|                                |                     |                  | Min - Max | 1.26 - 2.30                             | 2.17 - 2.67                             | 12.0 - 48.4  | $1.1.10^{-14} - 2.4.10^{-13}$                | 1247 - 3623                                | -                                             | 0.50 - 1.80                                    | -                                                 | 0.72 - 0.93 | -0.11 - 18.37                                         |

1E-09 1E-10 1E-11 (m<sup>2</sup>)Permeability 1E-16 1E-17 Porosity (%) ■ Andesite lava ■ Vesiculated andesite ★ Andesite with planar bedding ■ Hydrothermalized andesite Debris flow Pyroclasts ▲ Fracture filling ▲ Hydrothermalized volcaniclastic rocks



# Selected bibliography

- Feuillet, N., Manighetti, I., Tapponnier, P. and Jacques, E. "Arc Parallel Extension and Localization of Volcanic Complexes in Guadeloupe, Lesser Antilles." Journal of Geophysical Research 107, no. B12 (December 10, 2002).
- Mathieu, L., Van Wyk de Vries, B., Pilato, M., and Troll, V. "The Interaction between Volcanoes and Strike-Slip, Transtensional and Transpressional Fault Zones; Analogue Models and Natural Examples." Journal of Structural Geology 33, no. 5 (May 1, 2011): 898–906. Samper, A. Etude Géochronologique, Aspects Géomorphologiques et Géochimiques Du Volcanisme de L'île de Basse Terre (Guadeloupe), et Datation Des
- Structures D'effondrement de Flanc Majeures de L'arc Des Petites Antilles. Ph. D thesis, Université de Paris-Sud. Faculté des Sciences d'Orsay, 2007. Verati, C., Mazabraud, Y., Lardeaux, J.-M., Corsini, M., Schneider, D., Voitus, E. and Zami, F. "Tectonic Evolution of Les Saintes Archipelago (Guadeloupe, French West Indies); Relation with the Lesser Antilles Arc System." Bulletin de La Societe Geologique de France 187, no. 1 (February 1, 2016): 3–10.

# Aknowledgement

This study is a contribution for the GEOTREF program. It is funded by ADEME (Agency of the Environment and the Control of Energy) through the Future Investments funds of the French state.









